

Spring Valley Lake Spring 2015 Baseline Data Collection

Prepared for Spring Valley Lake Association

AquaTechnex, LLC www.aquatechnex.com

Headquarters Bellingham, WA 98228 360-527-1271 Regional Office Santa Ana, CA 92705 760-272-5842

Introduction

Spring Valley Lake Association is in the fifth year of working under a water clarity improvement program and has requested we perform a number of monitoring tasks to support this work. In continuation of previous mapping projects performed at Spring Valley Lake, a hydroacoustic mapping event was performed on May 18th, 2015. In addition, a water sample was analyzed for a number of water quality parameters and algae species identification. This report will summarize these findings.

Hydro-acoustic Mapping

AquaTechnex mobilized a hydro-acoustic mapping vessel to the lake on May 18th, 2015 to collect data on the potential presence and distribution of aquatic plant growth in the lake. In the previous spring mapping event, very minimal amounts of aquatic weeds were detected. Therefore, mapping was postponed by approximately one month to better to better effectively detect areas of plant growth. The mapping vessel traveled across the lake at regular intervals providing complete coverage of the water body. The sensing equipment collects a GPS point linked to hydro-acoustic soundings and this data is processed using algorithms to map bathymetry, aquatic plant bio-volume and sediment hardness. The resulting maps are presented in the following pages.

This image shows the current bathymetry of Spring Valley Lake. Slight changes have occurred since the previous spring.

This map shows the current bottom hardness present in the lake. The legend bar on the right shows the graduated scale.

At this point in the spring of 2015, the general aquatic plant coverage in Spring Valley Lake is low to none. Very minimal growth was detected on the north shore and very sparse growth was found in the fingers. Overall, this pattern is not unusual with Spring Valley Lake. Water clarity can limit light penetration into the lake bottom and plants have a hard time establishing. This year's mapping event was performed over a year after last year's spring mapping event and shows similar results. This suggests that aquatic plants growth will pick up in the summer and the mapping should be performed then to have better picture of where the growth is likely to occur this year.

Water Quality Data

The Spring Valley Lake Association performs regular water quality monitoring work on the lake. It is important to check this work with a certified laboratory from time to time and one sample was collected from Spring Valley Lake and submitted for that purpose. The samples were also analyzed for algal composition and cell counts. This information is critical to understanding the health of the lake. The report is attached and summarized here.

In the past, cyanobacterial blooms have been a major issue at Spring Valley Lake. At the time of the sampling, these species were not present in the water samples. The green algae species identified here are generally beneficial and an important component of the food web. Cell counts levels are relatively low, giving the lake a very light green hue.

Phosphorous levels present in the water column fuel the algal blooms. Latest test results show a high amount of total Phosphorous, but a low amount of Free Reactive Phosphorous (FRP). FRP is a measure of the available Phosphorous for algae production. This level is low and indicates that short term algae growth could be relatively minor.

SeSCRIPT Analysis Report: Spring Valley Lake 1

Company: AquaTechnex, LLC

Address: P.O. Box 30824, Bellingham, WA 98228

Contact Person: Ben Chen

Phone: 760-272-5842

Email: ben@aquatechnex.com

Project Name: Spring Valley Lake 1

Surface Area: 200 acres

Average depth: 8.5 feet

Date Sample Received: 5/19/15

SeSCRIPT Analysis Performed: Algae and Water Quality Baseline Plus Bundle

Algae ID Results Spring Valley Lake 1

Identification	Classification	Description	Density (cells/mL)
<i>Fragilaria</i> sp. (co-dominant)	Bacillariophyta- Diatoms	Filamentous/single-celled, planktonic	1,840
<i>Pediastrum</i> sp. (co-dominant)	Chlorophyta- Green algae	Colonial, planktonic	1,800
<i>Cyclotella</i> sp. (some present)	Bacillariophyta- Diatoms	Single-celled, planktonic	900

Other algae in the sample, at lower densities, include: *Scenedesmus, Oocystis* (Chlorophyta); *Achnanthes, Asterionella, Aulacoseira* (Bacillariophyta)

Water Quality Results Spring Valley Lake 1							
Analysis	Measurement	Description					
pH (SU)	6.4	Near Neutral					
Dissolved Oxygen (mg/L)	5.79	Acceptable for fish					
Conductivity (µS/cm)	395	Typical freshwaters					
Alkalinity (mg/L as CaCO ₃)	20.3	Low buffered					
Hardness (mg/L as CaCO ₃)	93	Moderately hard					
Turbidity (NTU)	7.2	Relatively low					

*Nutrient Results*Spring Valley Lake 1

Analysis	Measurement	Description
Total Phosphorus (µg/L)	33	High amount: eutrophic
Free Reactive Phosphorus (µg/L)	5.9	Low amount
Total Kjeldahl Nitrogen (mg/L)	3.43	Moderately high
Nitrates & Nitrites (mg/L)	0.543	Moderate
Total Nitrogen (mg/L)	3.97	Moderate
Chlorophyll <i>a</i> (µg/L)	9	Relatively low

Water Quality Analysis Explanation

These water quality parameters are essential to document the condition of a water body and design custom treatment prescriptions to achieve desired management objectives.

pH: Measure of how acidic or basic the water is (pH 7 is considered neutral).														
<6 notably acidic			6 - 9 standard for typical freshwaters						>9 notably basic					
0	l	2	3	4	5	6	7	8	9	10	11	12	13	14
Hardn typical	Hardness: Measure of the concentration of divalent cations, primarily consisting of calcium and magnesium in typical freshwaters. $0-60 \text{ mg/L}$ as CaCO ₃ soft; 61-120 moderately hard; 121-180 hard; > 181 very hard								um in [.] d					
Alkalin hydrox ≤ 50 m	nity- ide ir g/L a	Measu n typica s CaC	ure of the al freshv <i>O₃ low l</i>	e buffer waters. buffered	ring capa Waters l; 51-10	acity of with lo 0 mode	f water, ower lev erately b	primari els are puffered	ly consi more su ; <i>101-20</i>	sting of sceptible 00 <i>buffer</i>	carbonat to pH s red; > 20	e, bicarbo hifts. 90 <i>high bi</i>	onate and <i>uffered</i>	1
Condu < 50 u. typical	ctivi 5/cm fresh	ty- Me relativ waters	easure of ely low s; > 150	f the wa concent 00 may l	tters abil tration n be stress	lity to t nay no sful to s	ransfer t provid some fre	an elect e suffici eshwate	rical cui ent diss r organi	rrent, inc olved ior isms, tho	creases w is for eco ugh not i	vith more osystem h uncommo	dissolve lealth; 50 on in mar	d ions. 0-1500 1y areas
Dissolv < 2 mg suppor	v ed C /L lik t mos	Dxygen tely tox t fish c	- amoun cicity with and inve	nt of dia th suffic rtebrat	atomic c cient exp es	oxygen oosure	dissolve duration	ed in the $i; < 5 s$	e water. tressful	to many	aquatic	organism	$s; \geq 5 \ ab$	ole to
Phosp	iorus	s: Esse	ntial nu	trient o	ften cor	elating	g to grov	wth of a	lgae in f	freshwate	ers.			
Tot dig ava <12	al Ph estion ilable 2 μg/I	nospho a and in a, poter <i>L oligo</i>	orus (TI ncludes: ntial to b <i>ptrophic</i> ,	P) is the inorgation become 12-24	measur nic, oxic availab μg/L me	e of all lizable le and s	l phosph organic stable fo <i>phic; 25</i> -	orus in and po orms. -96 μg/I	a sampl lyphosp <i>Leutrop</i>	le as mea bhates. T <i>hic; > 9</i>	asured by his inclu 6 μg/L h	y persulfa ides what ypereutro	te strong is readil	y y
Fre etc)	e Re . This	active s form	Phosph is readi	orus (H ly avail	F RP) is able in t	the me he wat	asure of er colur	inorgai nn for a	nic disso Igae gro	olved rea	ctive pho	osphorus	(PO ₄ -3, I	-IPO ₄ -2,
Nitrog	en: E	Essentia	al nutrie	nt that (can enha	ance gr	owth of	algae.						
Tot for	al N Total	is all n Kjeld	itrogen hal Nitr	in the s ogen (T	ample (KN) an	organic d ionic	c N ⁺ and forms.	l Ammo	nia) det	ermined	by the s	um of the	e measure	ements
Nit < 1	r ites mg/l	and N L typica	itrates a al freshv	are the swater; 1	sum of t !-10 pot	otal ox <i>entiall</i> y	idized n v <i>harmfi</i>	itrogen <i>ıl; >10</i>	, often r possible	eadily fr e toxicity	ee for alg , <i>above i</i>	gae uptak nany regi	e. ulated gi	uideline
Chloro water o 0-2.6µ	phyl Juality g/L ol	l a : pr y in a s ligotro	rimary li system. phic; 2.	ight-haı 7-20 με	vesting g/L meso	pigme ptrophi	nt found c; 21-50	l in alga 6 µg/L e	e and a <i>utrophic</i>	measure $c; > 56 \mu$	of the al	lgal produ	uctivity a nic	und
Turbio commo < 10 N aquatio	lity- on con <i>TU d</i> c life.	Measu nstitue <i>rinkin</i> {	rement nts impa g water	of wate acting to <i>standar</i>	r clarity urbidity. rds and i	. Suspe	ended pa	articulat aters; 1	es (alga 0-50 NT	e, clay, s TU mode	ilt, dead rate; > 5	organic 1 50 NTU p	natter) a otential	re the impact
													Pa	age 3 c